




## B.E. (Full Time) - END SEMESTER EXAMINATIONS, DEC 2024

Electronics and communication Engineering  
III Semester

**EC23301 & Electromagnetic Fields**  
(Regulation2023)

Time:3hrs

Max.Marks: 100

|     |                                                                                   |
|-----|-----------------------------------------------------------------------------------|
| CO1 | Ability to apply the mathematical concepts to EM laws and theorem                 |
| CO2 | Ability to apply electromagnetic laws to static fields                            |
| CO3 | Ability to the understand the basic laws and concepts of static magnetic field.   |
| CO4 | Ability to the understand the Maxwells equation and nature of time varying fields |
| CO5 | Ability to the understand the nature of plane waves incident on different media.  |

**BL - Bloom's Taxonomy Levels**

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

**PART- A(10x2=20Marks)**  
(Answer all Questions)

| Q.No. | Questions                                                                                                                                                                                                                                                                            | Marks | CO | BL |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 1     | Given that $\mathbf{A} = a_x + \alpha a_y + a_z$ and $\mathbf{B} = \alpha a_x + a_y + a_z$ , if A and B are normal to each other, find $\alpha$                                                                                                                                      | 2     | 1  | 3  |
| 2     | Find the Laplacian of the scalar field $U = p^2 z \cos 2\phi$                                                                                                                                                                                                                        | 2     | 1  | 3  |
| 3     | Show that $\mathbf{E} = -\nabla V$                                                                                                                                                                                                                                                   | 2     | 2  | 2  |
| 4     | A capacitor is designed from 3cm x3 cm ,FR 4 sheet by pasting copper sheet on both sides. The thickness of the sheet is 2 mm. The conductivity of the copper is $\sigma=5.8 \times 10^7$ S/m. The dielectric constant for the FR4 is 4.4. find the value of the capacitor.           | 2     | 2  | 3  |
| 5     | A 10 mH solenoid inductor with length 'l' and cross sectional area 'A'. The number of turns used in the inductor is 10. Find the ratio of cross sectional area of length of the inductor.                                                                                            | 2     | 3  | 3  |
| 16    | State Faradays law.                                                                                                                                                                                                                                                                  | 2     | 3  | 1  |
| 7     | Define dielectric constant .                                                                                                                                                                                                                                                         | 2     | 4  | 1  |
| 8     | Let the region $z < 0$ be characterized with uniform dielectric material with $\epsilon_r = 3.2$ , while the region $z > 0$ is characterized with dielectric material $\epsilon_r = 2$ . Let $\mathbf{D}_1 = -30a_x + 50a_y + 70a_z$ , find the $\mathbf{D}_2$ in the region $z > 0$ | 2     | 4  | 3  |
| 9     | State Poynting theorem                                                                                                                                                                                                                                                               | 2     | 5  | 1  |
| 10    | Find the depth of penetration. If $\sigma = 58 \times 10^6$ mhos/m at frequency 10 MHz, 10 GHz. Write the inference.                                                                                                                                                                 | 2     | 5  | 3  |

**PART- B(5x 13=65Marks)**  
(Restrict to a maximum of 2 subdivisions)

| Q.No.     | Questions                                                                                                                                                                                                                                        | Marks | CO | BL |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| 11 (a)    | State divergence theorem and verify for the following vector $\mathbf{A} = 2pza_p + 3z\sin\phi a_\phi - 4pcos\phi a_z$ and S is the surface of the wedge $0 < p < 2$ , $0 < \phi < 45^\circ$ , $0 < z < 5$ .                                     | 13    | 1  | 3  |
| <b>OR</b> |                                                                                                                                                                                                                                                  |       |    |    |
| 11 (b)    | State stokes theorem and verify the theorem for the vector field $\mathbf{H} = 6xya_x - 3y^2a_y$ , A/m and the rectangular path around the region $2 \leq x \leq 5$ , $-1 \leq y \leq 1$ , $z=0$ . Let the positive direction of $dS$ be along Z | 13    | 1  | 3  |
| 12 (a)    | (i)The finite sheet $0 < x < 1$ , $0 < y < 1$ on the $z = 0$ plane has a                                                                                                                                                                         | 8+5   | 2  | 4  |

|  |                                                                                                                                                                                                                                                   |  |  |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | charge density $\rho_s = xy(x^2 + y^2 + 25)^{3/2}$ nC/m <sup>2</sup> . Find<br>(a) The total charge on the sheet<br>(b) The electric field at (0, 0, 5).<br>(ii) Define electric field intensity and electric flux density. Give its significance |  |  |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|

OR

|        |                                                                                                                                                                                                   |     |   |   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|
| 12 (b) | (i) Find the force on a $100\mu\text{C}$ charge at (0,0,5)m ,if four like charges of $29\mu\text{C}$ are located on the x and y axes at $\pm 5$ meters.<br>(ii)Derive the point form of ohms law. | 8+5 | 2 | 4 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|

|        |                                                                                                                                                                                                                                                                                                |     |   |   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|
| 13 (a) | (i) Derive the vector magnetic potential from Biot savart law.<br>(ii) A rectangular loop carrying current $I_2$ is placed parrallel to an infintely long filament carrying current $I_1$ as shown in fig. Determine the force between the two elements and also force experenced by the loop. | 5+8 | 3 | 4 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|

OR

|        |                                                                                                                                                                                                                                                                                        |     |   |   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|
| 13 (b) | (i) Find the magnetic field intensity for the infinte long conductor using Ampere circuital law.<br>(ii) A circular loop located on $x^2 + y^2 = 16$ , $z=0$ carries a direct current of 10 A ,along $a\phi$ . Determine $\mathbf{H}$ at (0,0,2) and (0,0,-2). Apply Biot-Savart'slaw. | 5+8 | 3 | 4 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|

|        |                                                                                                                                 |    |   |   |
|--------|---------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 14 (a) | Derive the electromagnetic boundary condition at the interface, for the region $z>0$ as good conductor and $z<0$ is free space. | 13 | 4 | 2 |
|--------|---------------------------------------------------------------------------------------------------------------------------------|----|---|---|

OR

|        |                                                                              |    |   |   |
|--------|------------------------------------------------------------------------------|----|---|---|
| 14 (b) | Derive the Maxwells equation from the basic laws and write its significance. | 13 | 4 | 2 |
|--------|------------------------------------------------------------------------------|----|---|---|

|        |                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|
| 15 (a) | (i)The electric field in free space is given by $\mathbf{E}=50 \cos (10^8 t + \beta x) \mathbf{a}_y$ V/m<br>(a) Find the direction of wave propagation.<br>(b) Calculate $\beta$ and the time it takes to travell a distance of/2.<br>(c) Sketch the wave at $t = 0$ , $T/4$ , and $T/2$ .<br>(ii) Using maxwells equation derive the electromagnetic wave equation for the time harmonic fields | 9+4 | 5 | 3 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|

OR

|        |                                                                                                                                                                                                                                                                                                                                                                                |     |   |   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|
| 15 (b) | (i). A uniform plane wave propagating in a medium has $\mathbf{E} = 2e^{\alpha z} \sin (10^8 t - \beta z) \mathbf{a}_y$ V/m. If the medium is characterized by $\epsilon_r = 1$ , $\mu_r = 20$ , and $\sigma = 3$ mhos/m, find $\alpha, \beta$ and $\mathbf{H}$ .<br>(ii) Explain the characteristics of uniform plane wave when incident normally to the conductor interface. | 9+4 | 5 | 3 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|

PART- C(1x 15=15Marks)  
 (Q.No.16 is compulsory)

| Q.No. | Questions                                                                                                                                                                                                              | Marks | CO  | BL |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----|
| 16.   | (i) Define gauss law . Find the electric flux density for the line of charge, sheet of charge and cloud of charge using gauss law.<br>(iii) Discuss the propagation of wave in the good conductor and lossy dielectric | 8+7   | 1+5 | 4  |